SSFT explained

The official

Secure Socket File Transfer

documentation

Jarle (jgaa) Aase
Jgaa’s Internet

jgaa@jgaa.com

SSFT explained: The official
Secure Socket File Transfer
documentation

by Jarle (jgaa) Aase

Published v0.01.03 2002/06/15
Published v0.01.02 2002/03/15
Published v0.01.01 2001/10/19

This manual is produced using DocBook (http://www.docbook.org/). The original manuscript is
included in the ssft source code distribution. You can browse the on-line version at ssft.jgaa.com
(http://ssft.jgaa.com/) or download the Adobe pdf version (http://ssft.jgaa.com/ssft-manual.pdf).

Table of Contents

... B
L. PUrpoSe / SCOPE Of TNIS DOCUMIENL......ccoueiveeieeeeeieseesieseeseeeee e sseesneeeesseenens B

2. Copyrights and TTademalKsS........cccuecereeienieie e B

T TOTTOAUCTION TO SSETl.....cciiiiieieeie e sre et s e ste e e ssesneessesneen @
O = 7= T3 2o T TV o OSSN M

2 =Y o T 00 1SS [

R R 0T 1]] o RS SS 8
... 8

.5, Obtaining SUPPOIT and TEPOITING BUGS.....cccvereeriereeriereerieeee e 8

1L ST Y U A To) (PSPPSR 2]

2. Compilation and INSTATATION..........ccervereeriererrieeieesieseeseesee e seesseeseesseees 1T
Z.I.Source code or preCoOmMpPiled DINAIY2........ooveeeirieriie e TC

2.2 Compiling UNAET WINTOWS.......ceoueererueesreeieesteseesreeeesieeseesseessesseessesneessesnnens 1T
2.3 Compiling UNder LiNUXTUNIX/POSIX.....cuvevereeierieeeesieeseeseesseseesseseessesseens 1

B. CONTIGUIATIONeeeieee ettt s ae e sne e e nn e eanes 2
I O O 1Y =T VT =1 USRI TSPPRSIN =2
B-Z_Creating certificateS UNAEr WINAOWS........cceeruererriereeniereenieseesieseeseeseens 3
B-3. Creating certificateS under LINUX/UJNIXcevereerereeneseeneeseesseseessenneens 4
B4 The CONTIGUIATION THl ... ccveiueeeeeieeieeienie ettt 1Rs)

7 B B C 1= aT=T -1 IS Y=Tox 110] o O SO SRRORRSTRR 16

B4 7 RUIEIUSET SECTION.eiivieieiteeiesiee st sae e see e see e ne s esesseenas (K4
B-4.3.Sample CONTIGUIAtiON Jil.......ccoeveeriereeerieseese e sie e iy

4 =TS TR T O TS 3 Sl SR 21
R IS Y ST AV 1= USSR 1

B O =TT 7 =Y. AR 1

[SY =7 0] 0171 01= 1| 24
BT WINAOWS N T SETVIGE.cccuerueeeesreeseeseesteseessesesssesssssseessessesssessesssessssssesssnns oz
SYOZ O 1D d o F-T=T T o FO OO R TP UPTSRPRSRPN 7ds)

- command Line Syntax and OPTONS.......c.ververeerrerieeriereesieeiee e sseessesseesees G

N2 1 =] 1o 1 A1= | o USSR 21
NG S O 0 Ta e T A F= T To LSRR 78
N T AT 0] 1110 T U URTP PRSPPI 30
... 37
[T TS I T (T o | S

List of Tables

BT CemifiCATE TIIE AMES.......ccvieeecireeecerieeeeetree e e eiare e e s sbre e e s sbreeesessseeesasseessssssesesanes
B-Z.OptionS iN The GENETAI SECHION. ...cviivieireceeete ettt st
B-3.0plionS N The RUIE/USET SECTIOMN......veeiireeeeirieciteeeereecreeeeareesereeeesreeeseeessressreeas
AT, ComMMAanNd TINE OPTIOMNS......ccuveeeiiitiieeeiiteeeeciieeeeesireeesssbreesssseesssssreeessssseessssssesssanes
A=Z.ComMMAanNd lINE OPTIOMNSccuveieiiitrieeeiiree e et e e esirreeeesrreesssseeeesssbeeessssseeessssreeesanes

SEEHEH

List of Examples

A-T.CopYINg TIIES (WINAOWSE)veeveereereereireereetesreerestesresteeressessessessessessessessessessessessens 74
B=-Z. COPYING THES TUTNIN)....uveeeiieereieieitrieeesireeessssssesessisssessssssessasssssssssssesssssssssssssssssasss s
30

=3 LISTING TIES ON TNE SEIVIEL....ee ettt ettt ettt e sree s e e sabeeeeneeeeanes

About this Manual

1. Purpose / Scope of this Document

This is the official documentation dhe Secure Socket File Transféris primarily
targeted against system administrators.

2. Copyrights and Trademarks

Copyright (c) 2001 - 2002 Jarle Aase

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation.

A copy of the license can be obmitted from framvw.gnu.org
(http://www.gnu.org/copyleft/fdl.html)

Chapter 1. Introduction to SSFT

1.1. Background

SSFT is a utility designed for system-administrators to copy files securely between
servers over insecure networks (like the Internet) or between different operating
systems on a non-trusted LAN. It's an alternative to scp (part of ssh, see
www.openssh.org (http://www.openssh.org)), but unlike scp, it don’t require a
login-account for the client on the server. The server-implementation of ssft is also
lightweight and highly portable, currently supported under Linux, FreeBSD 4.3 and
Windows NT (or better).

The program was initially written when | needed a secure way to transfer backup-files
from Linux firewalls to Windows 2000 backup servers. The alternatives was ftp (which
is a horrifying security-risk for critical systems), ssh (which would require a scp client
with certificates, or a sshd implementation for Windows 2000, and even then
compromise security as it require shell login permissions), samba (which is out of the
guestion on firewalls) or nfs (which is also a security-risk, and not even available as a
free client for Windows). Copying files in a secure manner from Linux to Windows
2000 was in fact not a trivial matter - and the solution was to invent SSFT.

As new demands have arised, | have added features to SSFT. Currently, it can copy
files, delete files, reliable replicate directory-structures, list (like the Is/DIR command)
files on the server (something I've missed urgently in sftp), and create directories on the
server. The program is primitive, with few actual commands, - but it is extreemly useful
for automated tasks. The next major feature on my list is port-forwarding.

SSFT runs from the command-line, or in the background as a native Unix
daemon/Windows NT Service. The current implementation was written in a hurry, and
is not scalable to large numbers of concurrent users (more than 50 - 60 | would guess).
The protocol is however simple, and if there is a demand for it, | may implement the
SSFT protocol in War FTP Daemon 3, which is scalable. The simplicity of the current
version allow the same binary to act as a command-line interactive client, a

Chapter 1. Introduction to SSFT

command-line interactive server or as a hidden, native system daemon/service.

1.2. Platforms

The following platforms are supported:

« Windows NT, 2000 and successors
« Windows 98, ME and successors

« Linux

« FreeBSD

« Other Unix/Posix variants with the GNU C++ environment present (may need some
porting efforts)

1.3. Licensing

The program is released under the Gnu Public License

(http://www.gnu.org/copyleft/fdl.html) (GPL). The program and source code is in other
words free. There is no fee, no user-registration, no royalties, no nothing.

1.4. Download

The latest version of SSFT can be downloaded from sourceforge.net/projects/ssft/
(http://sourceforge.net/projects/ssft/) The file section there contains both binary and
source tarballs. The files can of course also be downloaded from ftp.jgaa.com
(ftp://ftp.jgaa.com).

Chapter 1. Introduction to SSFT

1.5. Obtaining support and reporting bugs

SSFT is supported at support.jgaa.com (http://support.jgaa.com/). This site has a
modern bug-reporting and bug-tracking facility, and you can also suggest features
there, and subscribe to mailing lists. There is also a newsgroup: alt.comp.jgaa where
you can ask for support.

If you have discovered a bug that can compromise the security in SSFT please contact
<jgaa@jgaa.com > directly. If you don’t get a reply within 12 hours, please resend the
message.

1.6. Author

SSFT is written by Jarle (jgaa) Aase, best known for the original free FTP server for
windows, War FTP Daemon. You can visit my homepage at www.jgaa.com
(http://www.jgaa.com/).

Chapter 2. Compilation and installation

2.1. Source code or precompiled binary?

SSFT is distributed as source code, and as a compiled binary program for some
platforms (like Windows). If you happen to use a platform which is supported by the
binary distribution, this will be the most convenient way to install the package. If not,
you are probably using some Unix/Posix compliant operating system, - and you need to
compile the source code.

2.2. Compiling under Windows

Normally, you will use the binary Windows distribution. If you by some reason need to
compile your own binary, you need Microsoft Visual C++ version 6, SP 3 (or better).

SSFT require the openssil library to compile. If you don’t have this installed already,
you must download it from www.openssl.org (http://www.openssl.org). Follow the
instructions to compile the library (it's a bit tricky the first time, but it's well
documented). When done, choose whether to use the dll version or static library
version (I’'m using the static library version to reduce the number of files in the binary
distribution) and install it in Visual C++. (Open tAeols/Options menu, Select
directory, and add the path t0.OPENSSL-0.9.6B\INC32" to Include files and
"...OPENSSL-0.9.6B\OUT32" (or whatever suitable) to Library Files. Openssl will
now work just as the built-in libraries in the Windows 32 SDK, and you don't have to
manually add paths to it in your projects.

Download the latest source code from sourceforge.net/projects/ssft/
(https://sourceforge.net/projects/ssft/) and unpack it to a suitable location on your disk.
Open the ssft project with Microsoft Visual C++. Compile eitherWim32 Debug

build or theWin32 Release build, depending on your requirements. If you compile
theWin32 Debug build, you can trace the program 100% in the debugger.

10

Chapter 2. Compilation and installation

2.3. Compiling under Linux/Unix/Posix

You need the openssl library installed on your system prior to compiling SSFT. If you
don't have this installed already, you must download it from www.openssl.org
(http://www.openssl.org). Follow the instructions to compile and install the library.

Download the latest source code from sourceforge.net/projects/ssft/
(https://sourceforge.net/projects/ssft/) and unpack it to a suitable location on your disk.
Run./configure andmake the program. You will probably need the GNU c++
environment and GNU make (that's what I've used anyway). Manually copy the binary
to /ustr/local/bin or domake install

11

Chapter 3. Configuration

3.1. Overview

SSFT secures the file transfers with encrypted TCP/IP connections using the SSL
protocol. Both clients and servers must have a valid, public certificate, signed by a
mutual trusted certificate authority. You can be your own certificate authority, so there

is no need to purchase expensive certificates. The authentication scheme is flexible, and
suited to handle small or large number of clients in a very convenient manner. If you

are familiar with Windows, it may be a bit strange to work with configuration-files in

plain text, but after a few minutes, you wil realize that it would be close to impossible

to make something this simple, and yet flexible, using windows dialogs and wizards.

When a client connects to a server, it reads its own certificate and the
certificate-authority’s certificate. It passes it's own certificate to the server, and if the
server approve the connection, it receives the serves public certificate and verifies the
signature with the certificate-authority’s certificate. If the server is legitim, it starts to
send commands to the server. The server on its side, require clients to send their public
certificate. When this is received, it first verifies the signature with the
certificate-authority’s public certificate. If the client is legitim, it compares the
information about the client in its public certificate with rules in the servers .conf file. If

a matching rule is found, the client is accepted, under the limitations defined by the first
matching rule.

Why do SSFT mess with certificates, when most other protocols just ask for a
user-name and a password? Well, the answer is very simple: security. By using
certificates in both ends, it is very hard to expose a server to brute force password
guessing attacks. The attacker would have to guess the entire certificate, including the
signature - something that is a lot harder than just trying 100000 commonly used user
names and passwords. The use of certificates, in combination with the rule-based user
recognition, also makes it very easy to manage a huge number of users - as a simple
rule can match anyone in a city, company or even an entire country.

12

Chapter 3. Configuration

The current implementation restricts anyone matching an authenticate-rule to one
directory, and its subdirectories. This is done to reduce the complexity of the code, - the
protocol itself have no such limitations. A future server-implementation may map any
number of paths, with different access-rights, to a rule (or user certificate). "The
one-certificate, one path" approach is sufficient to achieve the original goals of the
program - to copy files in a secure manner between computers.

3.2. Creating certificates under Windows

The easy way to create certificates under Windows is to use ssft’s built-in capabilities.
This require the openssl.exe program to be in the same directory as ssft.exe or in the
PATH

1. Open a DOS window/Command prompt
2. Go to the directory where you installed ssftd('C:\program files\ssft")
3. Create certificates

a.ssft--cert-dir certs --generate-ca

b. ssft--cert-dir certs --new-server-cert

C. ssft--cert-dir certs --new-client-cert

You will be prompted for a password. This is the password for the root certificate you
create, and must be remembered. If you forget this password, you can no longer create
new certificates from the root certificate. (The certificate management is a simple
wrapper around OpenSSL. If you are familiar with OpenSSL, you can use this directly).

The root certificate is used to sign the sever and client certificates, and is the mutual
trusted authority that the security depends on. You can use your own and sign each
client certificate - or you can use a commercial service like Thawte if you expect lots of
clients, and don’'t have the means to do a proper validation of each of them (like when
the clients are spread around all over the world).

13

Chapter 3. Configuration

The certificates you create are located in the direatenyg , which can be any
directory you like. The default names of these files are:

Table 3-1. Certificate file names

ssft_root.cert

Public certificate for the certificate
authority. This must be distributed to all
clients.

cakey.pem

Private certificate for the certificate
authority. This should be protected well
and secured with proper file-permissions
possible). If someone steal this file, the
entire security is compromised!

ssft_daemon.cert

Public certificate for the server. Must be
signed by the certificate authority. Store
locally on the server-machine.

ssft_daemon.key

Private key for the server. Must be store
locally on the server-machine, and secu
with proper file-permissions (if possible)
Anyone that gets a copy of this file can
impersonate the server(!)

ssft_client.cert

Public certificate for a client. Stored
locally on the client-machine.

ssft_client.key

Private key for the client. Stored locally
the client-machine, and protected. Anyo
that gets a copy of this fille, and the clien

5 (if

d
red

public key, can impersonate the client(!)

14

Chapter 3. Configuration

3.3. Creating certificates under Linux/Unix

Openssl comes with a perl-scri@A.pl that makes it pretty easy to create and manage
certificates under Unix. The script has one weakness; it can not create certificates
without a passphrase. In a secure server, you may not want the boot-process to stop just
to enter a passphrase. | have made the following addition to the script:

} elsif (/*-newreg-nopwd$/) {
create a certificate request

system ("$REQ -new -keyout newreq.pem -out newreq.pem $DAYS -
nodes");

SRET=%$?;

print "Request (and private key) is in newreq.pem\n”;

If you use theCA.pl script for this purpose, you just have to rename the files you create
to fit the purpose.

You can of course also use the procedure described above for Windows, to create
certificates. Your clients can also create their own certificate requests, that you sign and
send back to them. This is typically done when the clients are companies that require
control over the .key files themselves.

3.4. The Configuration file

SSFT depends on a configuration file; a textfile with simple directives. If you are
familiar with Windows, you can think of this file as an extendied file. If you are
familiar with Unix, you know what a configuration file is ;)

The configuration file can be specified by a command-line argument when SSFT is
started {-conf-file=path). If it is not specified, and SSFT is running as a client, SSFT
will look for it as ...Application Data\ssft\ssft.conf (Windows), or
~/.ssft.conf (Unix). If this file is not found, or SSFT is running as a server, it will
look for ...WINDOWS\ssft.conf (Windows) or/etc/ssft/ssft.conf (Unix).

15

Chapter 3. Configuration

The configuration file consist of two sections; the general section, and the rule/user
section.

3.4.1. General Section

Table 3-2. Options in the general section

cert-dir The path to the directory containing the
certificates.
log-file The path to a log-file. If this option is set,

SSFT will maintain a log. If not, no log will
be written (unless the --log-file
command-line argument is given when
SSFT starts up).

port TCP/IP port-number to use. The default
port is 230.
pid-file The server can write its process ID to a

file. This is common under UNIX systems,
where signals to this process IP is used|to
shut down the server

server-cert The name of the server-certificate
server-key The name of the server’s private key
client-cert The name of the client-certificate
client-key The name of the client’s private key

3.4.2. Rule/User Section

The information is received from the client certificate, which means that the

16

Chapter 3. Configuration

combination of fields we use must be unique. The simplest setup would be to use the
names only, and make sure to avoid duplicate names. We can use any field from the
certificate 'subject’. Note that the compare method is case sensitive. Patterns are
allowed.

Table 3-3. Options in the Rule/User section

3.4.3. Sample configuration file

SSFT demo server configuration file

This is just an example of a configuration
file for ssft under Microsoft Windows.

H H O HH

HOHHF H H
@
0]
S
@
D
%)
(9]
Q
=
S

[General]

cert-dir = C:\devel\current\ssft\certs
log-file = C:\devel\current\ssft\svr_test\server.log

Uncomment and set port number if you want to
use an alternative port (230 is the default port)

port =

The server can write its process ID to a file.

17

Chapter 3.

18

Configuration

This is common under UNIX systems, where signals
to this process IP is used to shut down the server.
pid-file =

SERVER options

H* H#

H* H H H

H* H#

H H O HH

HOH O H O HH R H

server-cert =

server-key =

Uncomment if you want to bind to a spesific IP
number. The default is to use all IP numbers
assigned to the machine.

host =

CLIENT options

client-cert =
client-key

This is relevant for servers only

The information is received from the client sertificate,
which means that the combination of fields we use must
be unique. The simplest setup would be to use the
names only, and make sure to avoid duplicate names.
We can use any field from the certificate 'subject’.

Note that the compare method is case sensitive.

Patterns are allowed.

Spesific user
[User: O=Jgaas Inter-
net, CN=jgaa client 1, Email=jgaa@clientl.jgaa.com]

A name we use to identify the user uniquely
(well, its for our convenience only so the

server does not validate the value)

alias = Jarle

The users root-path
root-path = C:\ssft_test\users\jgaa_client_1

The operations we allow for this client
Possible values are: read, write, list, delete, createdir
perms = read, write, list, delete, createdir

All other clients from Jgaa’s Internet
[User: O=Jgaas Internet, CN=jgaa client*]

alias = jgaa’s Internet
root-path = C:\ssft_test\users\Jgaas Internet
perms = list

Default rights for US users

[User: C=US]

alias = US citizens

root-path = C:\ssft_test\users\us\unknown
perms = list

Default rights if not specified above
[User: CN=*]

alias = nobody

root-path = C:\ssft_test\users\unknown
perms = list, read

Chapter 3. Configuration

19

Chapter 3. Configuration

Note: The lines may be wrapped in this manual. In the configuration-file, the
"token = value" sequence must be on one single line. This also applies for the
"[User: ...]" sequence.

20

Chapter 4. Testing SSFT

4.1. Server test

| assume that you have created the certificates and edited the configuration-file. Below
is the configuration file | used in this sample:

[General]

Default rights if not specified above

[User: CN=%*]

alias = nobody

root-path = C:\Program Files\ssft\public
perms = read, write, list, delete, createdir

Now, open a MS-DOS/Command window, or terminal window if you are running X,
and start SSFT in server-mode.

C:\Program Files\ssft> ssft --cert-dir certs --server --verbose
ssft version 0.10, Copyright (C) 2001 Jarle (jgaa) Aase

ssft comes with ABSOLUTELY NO WARRANTY

This is free software, and you are welcome to redistribute it
under certain conditions;

ssft --license for details.

Listening for connections at 0.0.0.0:230

Ready, waiting for client connection...

If you get a output similar to this, things are looking good ;) The server is willingly
running and waiting for clients. Keep it running while we test the client-mode.

21

Chapter 4. Testing SSFT

4.2. Client test

22

Open a new MS-DOS/Command window or terminal window, and try a file-copy
command, using SSFT

C:\Program Files\ssft> ssft --verbose --cert-

dir certs ReadMe.txt localhost:/

ssft version 0.10, Copyright (C) 2001 Jarle (jgaa) Aase
ssft comes with ABSOLUTELY NO WARRANTY

This is free software, and you are welcome to redistribute it
under certain conditions;

ssft --license for details.

Looking up hostname localhost ... 127.0.0.1

Connecting to 127.0.0.1:230

SSL connection using DES-CBC3-SHA

Server certifi-

cate: /C=NO/ST=Hordaland/L=Bergen/O=Jgaas Internet...
Certificate is-

suer: /C=NO/ST=Hordaland/L=Bergen/O=Jgaas Internet...
connected to server

Sending file "ReadMe.txt" --> "localhost:/"

File transfered OK

Successfully done.

If you switch back to the server console, you should see something like this:

Client connected from 127.0.0.1:1038

Client sent Transfer from Client to Server command

Receiving file from client no-

body (127.0.0.1:1038): name="C:\Program Files\ssft\public\ReadMe.txt" size=262 bytes.
Received file client (127.0.0.1:1038): name="ReadMe.txt" size=262 bytes. OK

Client sent Quit command

When you have come this far, the program is working, and you can start to set up
and test your production environment.

Chapter 4. Testing SSFT

Note: It's a good idea to test everything in interactive mode before you run SSFT
as a daemon, or the client as an automated job.

23

Chapter 5. Deployment

5.1. Windows NT Service

SSFT can run as a native Windows NT service. This means that the program starts
when the machine boots, and runs in the background, unaffected by user sessions on
the machine. The only way SSFT can communicate with the operator while running as
a service, is through the logfile. This should therefore be assigned in the configuration
file at this time.

[General]

log-file = C:\Program Files\ssft\server.log

The following command will install SSFT as a service:

C:\Program Files\ssft> ssft --server --daemon --verbose --install
Successfully installed as a NT service as "ssft".

You must now enter the service applet in the con-

trol panel and configure the startup mode.

C:\Program Files\ssft> net start ssft
The ssft service is starting.
The ssft service was started successfully.

C:\Program Files\ssft> type server.log

2001-10-19 07:48 Now running as a native NT service.

2001-10-

19 07:48 ssft version 0.10, Copyright (C) 2001 Jarle (jgaa) Aase
ssft comes with ABSOLUTELY NO WARRANTY

This is free software, and you are welcome to redistribute it
under certain conditions;

24

Chapter 5. Deployment

ssft.exe --license for details.
2001-10-19 07:48 Ready, waiting for client connection...

C:\Program Files\ssft>

The three commandssft, net start and typeinstalls SSFT as a service, verifies that it
can start, and prints the log to the screen, so that you can spot any error-messages. If
everything seems ok, you can open the Services applets in the control panel, and
configure the service to start automatically.

If you ever need to uninstall SSFT as a NT service, just issue the comssénd
--uninstall

5.2. Unix daemon

SSFT can run as a native Unix daemon. This means that the program starts when the
machine boots, and runs in the background, unaffected by user sessions on the
machine. The only way SSFT can communicate with the operator while running as a
service, is through the logfile. This should therefore be assigned in the configuration
file at this time.

There is no uniform way to install a Unix daemon. The procedure varies from operating
system to operating system, and even from distribution to distribution. SSFT must
therefore be manually configured according to your system documentation.

In short, the commansisft --server --daemorwill start ssft in server-mode, and switch
to daemon mode. This command can be run from the initialization script for your Unix
brand (if the certificates and configuration file are ok).

25

Appendix A. Command Line Syntax
and Options

A.l. Overview

SSFT understand Posix-style command-line options. In environments with a complete
Gnu c library (line Linux), the Posix compatibility should be pretty good - but under
Windows and other systems that don’t support the getopt_long() library function, SSFT
use a simple substitute | wrote some time ago. This substitute understand the

--option and-- flags, but will not reorganize options. In English, this means that
options must be given before other arguments.

SSFT works much like scp (or cp/copy). You specify a file (or several files), and a
destination (file or folder). Either the source or destination must contain a hosthame or
IP number that prefix the source or destination file. Some examples:

Example A-1. Copying files (Windows)
ssft "C:\Program Files\ssft\ReadMe.txt" 192.168.0.10:/testdir
ssft 192.168.0.10:/testdir/ReadMe.txt "C:\Program Files\ssft\"

ssft 192.168.0.10:/testdir C:\temp

Example A-2. Copying files (Unix)
ssft /usr/local/doc/ssft/ReadMe.txt 192.168.0.10:/testdir
ssft 192.168.0.10:/testdir/ReadMe.txt /home/jgaa

ssft 192.168.0.10:/testdir /tmp

26

Appendix A. Command Line Syntax and Options

Note: Note that the remote path always use normal slashes, while the local paths
use the semantics of your operating system.

A.2. Getting help

Usessft--help to get a brief list and explanation of all the supported command-line
options.

C:\devel\current\ssft\Debug>ssft --help

Client mode:

ssft [options] host:source target

ssft [options] source [source...] host:target

ssft [options] --command dir host:target

ssft [options] --command delete host:target

ssft [options] --command mkdir host:target

ssft [options] -C replicate [host:]source [host:]target
(--command can be substituted with -C)

Server mode:

ssft [options] [hostname]

Utility mode (install, uninstall, certificate management):
ssft option [...]

Options:
-c --conf-file=name Specifies the configuration file to use
-p --port=# Set port number. Default is 230
-V --version Show version number and quit
--verbose Turn on verbose mode
--debug Turn on debug messages
--server Server mode (default is client mode)
--daemon Runs as a daemon
--delete Delete orphan files during replication.

If used with --replicate, orphan files

27

Appendix A. Command Line Syntax and Options

are deleted.
-R --recurse Enable recursive dir-listings and repl.
--hash=shallmd5 Hash digest to use in dir-
listings and repl.

-l --log-file=name Name of lodfile
-h --help Show this help
--cert-dir=path Certificate directory

--root-cert=name Root certificate file
--client-cert=name Client certificate
--client-key=name Client private key file
--server-cert=name Server certificate
--server-key=name Server private key file
--pid-file=name Write process ID to file
-s --service-name=name Sets the service name.
Used with --install

- --install Install as a NT service (and quit)
-u --uninstall Uninstall as a NT service (and quit)
-L --license Show licensing terms (GPL)

Certificate management:
--generate-ca Generates a root certificate
--new-server-cert Generates a server certificate
--new-client-cert Generates a client certificate
--sign-cert=name Sign the certificate 'name’.
Options:
--with-password Create a certificate with password
--create-only Only create a cert. Do not sign.

The actual options that are available may vary from version to version, and from
operating system to operating system.

28

Appendix A. Command Line Syntax and Options

A.3. Commands

SSFT is normally used to copy files from one location to another. If you want to use
oen of the other features, you must specify the command (mode). This is done with the
--command or -C flag.

Table A-1. Command line options

copy Copies files from the client to the server, or
from the server to the client. This is the
default command that are assumed if ng
other commands are given.

dir Lists a directory on the server. Can be used
with the --recurse option to list all
directories below the specified path. If the
--hash is used, the hash-value for each file,
using the specified hash-digest method,|is
printed in front of the file name.

delete Deletes a file or a directory. If the --recurse
is used, any directories below the specified
path is deleted automatically.

mkdir Creates a directory on the server

29

Appendix A. Command Line Syntax and Options

replicate Replicates a directory-structure from th
client to the server, or from the server tojthe
client. Any file that don’t exist on the target

is copied, and any file that exists on the
target is overwritten if it differs from the
source file. The equality of files are decided
from the a hash hash-value, normally
calculated using the shal algorithm. If you
prefer md5, this can be specified with the
--hash=md5 option. If you want files on the
target that don't exist on the source to be
deleted, you can use the --delete option

(D

Example A-3. Listing files on the server

$ ssft -C dir serverhost:/

A.4. The options

Table A-2. Command line options

30

Appendix A. Command Line Syntax and Options

--conf-file Specifies the configuration-file to use. This
option is persistent when used under
Windows with the --install --daemon

--server options. You can also specify what
configuration-file the service shall use, and
if use different ports and service-names
you can have several service instances
running at the same Windows machine.
Under Unix, the startup scripts are sane} so
this special feature is not required.

--port Specifies a TCP/IP port to use. The seryver
will listen to this port. The client will
connect to it.

--version Prints the program name and version
number to the console and quits.

--verbose Prints more verbose information to the
console.

--debug Prints lots of information to the console

Used to debug the internals of the program.

--server Starts up in server-mode. The default ig
client-mode. In server-mode, SSFT waits
for incomming connections from clients.

--daemon Runs as a Unix daemon (hidden and
unaffected by the user). Under NT, this flag
is used with --install to flag that the
program shall be installed as a system
service.

--delete If used with the replicate command,
orphan files on the target will be deleted,|

31

Appendix A. Command Line Syntax and Options

32

--recurse If used with the delete or replicate
commands, the operation applies for all
files/dirs in the specified path.

--hash Specifies what hash-digest algorithm to
use. Significant for the dir and replicate
commands.

--log-file Specifies a log-file. If not set, no log will
be written, (unless the log-file directive is
specified in the configuration file).

--help Prints a short help-text to the console.

--cert-dir Certificate directory

--root-cert Root certificate file

--client-cert Client certificate

--client-key Client private key file

--server-cert

Server certificate

--server-key

Server private key file

--service-name

Used with --install to specify the name t
NT server will register as. The default is
"ssft". Other names can be used to test
experimental versions, or to run several
instances of the service.

--install

Installs SSFT as a Windows NT service
and exits. This option is only available
under Windows NT and successors.

--uninstall

Uninstalls the SSFT NT service. If you
specified another name than "ssft" with

option here.

--service-name, you must specify the same

--license

Show licensing terms (Gnu Public

License)

Appendix A. Command Line Syntax and Options

--generate-ca Generates a new certificate authority
certificate and key pair. This is required
you want to be your own certificate
authority. You will be prompted for a few
guestions and a password. It is importar
that you remember this password!

—

~—+

--new-server-cert Generates a new server certificate, and
signs it with the certificate authority
certificate. If the --create-only option is
used, the certificate is not signed.

--new-client-cert Generates a new client certificate, and
signs it with the certificate authority
certificate. If the --create-only option is
used, the certificate is not signed.

--sign-cert Signs a certificate. The input file is giver
as the the parameter. The output file is the
default client certificate. This can be
modified with the --client-cert option.

—

--Ccreate-only Prevents signing of a new certificate. This
allows clients to create their own
certificates, that later can be signed by the
Certificate Authority.

--with-password Certificates created with this option will
have passwords. This is recommended for
client certificates that are used by
intaractive clients. If you use a
password-protected certificate on the server
- you must enter the password each time
the srever starts up - typically when the
machine boots.

33

Appendix B. Firewalls

When it comes to legitim network traffic, firewalls are hell. Many new protocols today
encapsulate themselves into the http (www) protocol to bypass firewalls. This may
seem like a good idea, initially - as one avoid some problems with troublesome firewall
administrators. But it also undermines the security, since the same firewall
administrators loose the ability to decide what to let through to the internal network.
SSFT makes no attempts to masquerade itself as something else. The protocol is
however designed to make as little problems as possible when it is allowed through a
firewall. It makes use of a single TCP/IP address, and have no need for protocol-level
NAT if it is routed to a private network (like i.e. FTP).

In order to allow SSFT through a firewall, open TCP port 230 from the client(s) to the
server(s). This is trivial on most firewalls, including ipchains and iptable based Linux
firewalls. If you have a firewall that require a protocol-layer driver, you can use any
driver that pass the TCP/IP stream untouched through. A Telnet driver cannot be trusted
as it may react on telnet escape sequences.

34

Appendix C. The SSFT protocol

C.1. Overview

The SSFT protocol is a request/response driven protocol, like http and nntp. Unlike

these, the headers are sent as raw 8-bit binary data. Integers are in "network byte order"
(big endian).

More details to follow...

35

