
SSFT explained

The official
Secure Socket File Transfer

documentation

Jarle (jgaa) Aase
Jgaa’s Internet

jgaa@jgaa.com

SSFT explained: The official
Secure Socket File Transfer
documentation
by Jarle (jgaa) Aase

Published v0.01.01 2001/10/19

This manual is produced using DocBook (http://www.docbook.org/). The original manuscript is
included in the ssft source code distribution. You can browse the on-line version at ssft.jgaa.com
(http://ssft.jgaa.com/) or download the Adobe pdf version (http://ssft.jgaa.com/ssft-manual.pdf).

Table of Contents
About this Manual ...6

1. Purpose / Scope of this Document...6
2. Copyrights and Trademarks...6

1. Introduction to SSFT...7

1.1. Background...7
1.2. Platforms...7
1.3. Licensing...8
1.4. Download..8
1.5. Obtaning support and reporting bugs..8
1.6. Author...9

2. Compilation and installation...10

2.1. Source code or precompiled binary?...10
2.2. Compiling under Windows...10
2.3. Compiling under Linux/Unix/Posix..11

3. Configuration ...12

3.1. Overview...12
3.2. Creating certificates under Windows..13
3.3. Creating certificates under Linux/Unix...14
3.4. The Configuration file...15

3.4.1. General Section..16
3.4.2. Rule/User Section..16
3.4.3. Sample configuration file...17

4. Testing SSFT...21

4.1. Server test..21
4.2. Client test..21

5. Deployment...24

5.1. Windows NT Service..24
5.2. Unix daemon...25

A. Command Line Syntax and Options...26

3

A.1. Overview..26
A.2. Getting help..27
A.3. The options...28

B. Firewalls ...31

C. The SSFT protocol..32

C.1. Overview..32

4

List of Tables
3-1. Certificate file names..13
3-2. Options in the general section..16
3-3. Options in the Rule/User section..17
A-1. Command line options...28

List of Examples
A-1. Copying files (Windows)...26
A-2. Copying files (Unix)..26

5

About this Manual

1. Purpose / Scope of this Document
This is the official documentation onthe Secure Socket File Transfer. It is primarily
targeted against system administrators.

2. Copyrights and Trademarks
Copyright (c) 2001 Jarle Aase

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation.

A copy of the license can be obmitted from fromwww.gnu.org
(http://www.gnu.org/copyleft/fdl.html)

6

Chapter 1. Introduction to SSFT

1.1. Background
SSFT is a utility designed for system-administrators to copy files securely between
servers over insecure networks (like the Internet) or between different operating
systems on a non-trusted LAN. It’s an alternative to scp (part of ssh, see
www.openssh.org (http://www.openssh.org)), but unlike scp, it don’t require a
login-account for the client on the server. The server-implementation of ssft is also
lightweight and highly portable, currently supported under Linux, FreeBSD 4.3 and
Windows NT (or better).

The program was initially written when I needed a secure way to transfer backup-files
from Linux firewalls to Windows 2000 backup servers. The alternatives was ftp (which
is a horrifying security-risk for critical systems), ssh (which would require a scp client
with certificates, or a sshd implementation for Windows 2000, and even then
compromise security as it require shell login permissions), samba (which is out of the
question on firewalls) or nfs (which is also a security-risk, and not even available as a
free client for Windows). Copying files in a secure manner from Linux to Windows
2000 was in fact not a trivial matter - and the solution was to invent SSFT.

SSFT runs from the command-line, or in the background as a native Unix
daemon/Windows NT Service. The current implementation was written in a hurry, and
is not scalable to large numbers of concurrent users. The protocol is however simple,
and if there is a demand for it, I may implement the SSFT protocol in War FTP
Daemon 3, which is scalable. The simplicity of the current version allow the same
binary to act as a command-line interactive client, a command-line interactive server or
as a hidden, native system daemon/service.

7

Chapter 1. Introduction to SSFT

1.2. Platforms
The following platforms are supported:

• Windows NT, 2000 and successors

• Windows 98, ME and successors

• Linux

• FreeBSD

• Other Unix/Posix variants with the GNU C++ environment present (may need some
porting efforts)

1.3. Licensing
The program is released under the Gnu Public License (GPL). The program and source
code is in other words free. There is no fee, no user-registration, no royalties, no
nothing.

1.4. Download
The latest version of SSFT can be downloaded from sourceforge.net/projects/ssft/
(http://sourceforge.net/projects/ssft/) The file section there contains both binary and
source tarballs. The files can of course also be downloaded from ftp.jgaa.com
(ftp://ftp.jgaa.com). If you run Debian Linux, you can try the experimental apt site at
apt.jgaa.com (http://apt.jgaa.com).

8

Chapter 1. Introduction to SSFT

1.5. Obtaning support and reporting bugs
SSFT is supported at support.jgaa.com (http://support.jgaa.com/). This site has a
modern bug-reporting and bug-tracking facility, and you can also suggest features
there, and subscribe to mailing lists. There is also a newsgroup: alt.comp.jgaa where
you can ask for support.

If you have discovered a bug that can compromise the security in SSFT please contact
<jgaa@jgaa.com > directly. If you don’t get a reply within 12 hours, please resend the
message.

1.6. Author
SSFT is written by Jarle (jgaa) Aase, best known for the original free FTP server for
windows, War FTP Daemon. You can visit my homepage at www.jgaa.com
(http://www.jgaa.com/).

9

Chapter 2. Compilation and installation

2.1. Source code or precompiled binary?
SSFT is distributed as source code, and as a compiled binary program for some
platforms (like Windows). If you happen to use a platform which is supported by the
binary distribution, this will be the most convenient way to install the package. If not,
you are probably using some Unix/Posix compliant operating system, - and you need to
compile the source code.

2.2. Compiling under Windows
Normally, you will use the binary Windows distribution. If you by some reason need to
compile your own binary, you need Microsoft Visual C++ version 6, SP 3 (or better).

SSFT require the openssl library to compile. If you don’t have this installed already,
you must download it from www.openssl.org (http://www.openssl.org). Follow the
instructions to compile the library (it’s a bit tricky the first time, but it’s well
documented). When done, choose whether to use the dll version or static library
version (I’m using the static library version to reduce the number of files in the binary
distribution) and install it in Visual C++. (Open theTools/Options menu, Select
directory, and add the path to"...OPENSSL-0.9.6B\INC32" to Include files and
"...OPENSSL-0.9.6B\OUT32" (or whatever suitable) to Library Files. Openssl will
now work just as the built-in libraries in the Windows 32 SDK, and you don’t have to
manually add paths to it in your projects.

Download the latest source code from sourceforge.net/projects/ssft/
(https://sourceforge.net/projects/ssft/) and unpack it to a suitable location on your disk.
Open the ssft project with Microsoft Visual C++. Compile either theWin32 Debug
build or theWin32 Release build, depending on your requirements. If you compile
theWin32 Debug build, you can trace the program 100% in the debugger.

10

Chapter 2. Compilation and installation

2.3. Compiling under Linux/Unix/Posix
You need the openssl library installed on your system prior to compiling SSFT. If you
don’t have this installed already, you must download it from www.openssl.org
(http://www.openssl.org). Follow the instructions to compile and install the library.

Download the latest source code from sourceforge.net/projects/ssft/
(https://sourceforge.net/projects/ssft/) and unpack it to a suitable location on your disk.
Run./configureandmake the program. You will probably need the GNU c++
environment and GNU make (that’s what I’ve used anyway). Manually copy the binary
to /usr/local/bin or domake install

11

Chapter 3. Configuration

3.1. Overview
SSFT secures the file transfers with encrypted TCP/IP connections using the SSL
protocol. Both clients and servers must have a valid, public certificate, signed by a
mutual trusted certificate authority. You can be your own certificate authority, so there
is no need to purchase expensive certificates. The authentication scheme is flexible, and
suited to handle small or large number of clients in a very convenient manner. If you
are familiar with Windows, it may be a bit strange to work with configuration-files in
plain text, but after a few minutes, you wil realize that it would be close to impossible
to make something this simple, and yet flexible, using windows dialogs and wizards.

When a client connects to a server, it reads its own certificate and the
certificate-authority’s certificate. It passes it’s own certificate to the server, and if the
server approve the connection, it receives the serves public certificate and verifies the
signature with the certificate-authority’s certificate. If the server is legitim, it starts to
send commands to the server. The server on its side, require clients to send their public
certificate. When this is received, it first verifies the signature with the
certificate-authority’s public certificate. If the client is legitim, it compares the
information about the client in its public certificate with rules in the servers .conf file. If
a matching rule is found, the client is accepted, under the limitations defined by the first
matching rule.

Why do SSFT mess with certificates, when most other protocols just ask for a
user-name and a password? Well, the answer is very simple: security. By using
certificates in both ends, it is very hard to expose a server to brute force password
guessing attacks. The attacker would have to guess the entire certificate, including the
signature - something that is a lot harder than just trying 100000 commonly used user
names and passwords. The use of certificates, in combination with the rule-based user
recognition, also makes it very easy to manage a huge number of users - as a simple
rule can match anyone in a city, company or even an entire country.

12

Chapter 3. Configuration

The current implementation restricts anyone matching an authenticate-rule to one
directory, and its subdirectories. This is done to reduce the complexity of the code, - the
protocol itself have no such limitations. A future server-implementation may map any
number of paths, with different access-rights, to a rule (or user certificate). "The
one-certificate, one path" approach is sufficient to achieve the original goals of the
program - to copy files in a secure manner between computers.

3.2. Creating certificates under Windows
The easy way to create certificates under Windows is to use ssft’s built-in capabilities.
This require the openssl.exe program to be in the same directory as ssft.exe or in the
PATH.

1. Open a DOS window/Command prompt

2. Go to the directory where you installed ssft (cd "C:\program files\ssft")

3. Create certificates

a.ssft --cert-dir certs --generate-ca

b. ssft --cert-dir certs --new-server-cert

c. ssft --cert-dir certs --new-client-cert

You will be prompted for a password. This is the password for the root certificate you
create, and must be remembered. If you forget this password, you can no longer create
new certificates from the root certificate. (The certificate management is a simple
wrapper around OpenSSL. If you are familiar with OpenSSL, you can use this directly).

The root certificate is used to sign the sever and client certificates, and is the mutual
trusted authority that the security depends on. You can use your own and sign each
client certificate - or you can use a commercial service like Thawte if you expect lots of
clients, and don’t have the means to do a proper validation of each of them (like when
the clients are spread around all over the world).

13

Chapter 3. Configuration

The certificates you create are located in the directorycerts , which can be any
directory you like. The default names of these files are:

Table 3-1. Certificate file names

ssft_root.cert Public certificate for the certificate
authority. This must be distributed to all
clients.

cakey.pem Private certificate for the certificate
authority. This should be protected well
and secured with proper file-permissions (if
possible). If someone steal this file, the
entire security is compromised!

ssft_daemon.cert Public certificate for the server. Must be
signed by the certificate authority. Stored
locally on the server-machine.

ssft_daemon.key Private key for the server. Must be stored
locally on the server-machine, and secured
with proper file-permissions (if possible).
Anyone that gets a copy of this file can
impersonate the server(!)

ssft_client.cert Public certificate for a client. Stored
locally on the client-machine.

ssft_client.key Private key for the client. Stored locally on
the client-machine, and protected. Anyone
that gets a copy of this fille, and the clients
public key, can impersonate the client(!)

14

Chapter 3. Configuration

3.3. Creating certificates under Linux/Unix
Openssl comes with a perl-script,CA.pl that makes it pretty easy to create and manage
certificates under Unix. The script has one weakness; it can not create certificates
without a passphrase. In a secure server, you may not want the boot-process to stop just
to enter a passphrase. I have made the following addition to the script:

} elsif (/^-newreq-nopwd$/) {
create a certificate request

system ("$REQ -new -keyout newreq.pem -out newreq.pem $DAYS -
nodes");

$RET=$?;
print "Request (and private key) is in newreq.pem\n";

If you use theCA.pl script for this purpose, you just have to rename the files you create
to fit the purpose.

You can of course also use the procedure described above for Windows, to create
certificates. Your clients can also create their own certificate requests, that you sign and
send back to them. This is typically done when the clients are companies that require
control over the .key files themselves.

3.4. The Configuration file
SSFT depends on a configuration file; a textfile with simple directives. If you are
familiar with Windows, you can think of this file as a extended.ini file. If you are
familiar with Unix, you know what a configuration file is ;)

The configuration file can be specified by a command-line argument when SSFT is
started (--conf-file=path). If it is not specified, and SSFT is running as a client, SSFT
will look for it as ...Application Data\ssft\ssft.conf (Windows), or
~/.ssft.conf (Unix). If this file is not found, or SSFT is running as a server, it will
look for ...WINDOWS\ssft.conf (Windows) or/etc/ssft/ssft.conf (Unix).

15

Chapter 3. Configuration

The configuration file consist of two sections; the general section, and the rule/user
section.

3.4.1. General Section

Table 3-2. Options in the general section

cert-dir The path to the directory containing the
certificates.

log-file The path to a log-file. If thee option is set,
SSFT will maintain a log. If not, no log will
be written (unless the --log-file
command-line argument is given when
SSFT starts up).

port TCP/IP port-number to use. The default
port is 230.

pid-file The server can write its process ID to a
file. This is common under UNIX systems,
where signals to this process IP is used to
shut down the server

server-cert The name of the server-certificate

server-key The name of the servers private key

client-cert The name of the client-certificate

client-key he name of the clients private key

3.4.2. Rule/User Section
The information is received from the client certificate, which means that the

16

Chapter 3. Configuration

combination of fields we use must be unique. The simplest setup would be to use the
names only, and make sure to avoid duplicate names. We can use any field from the
certificate ’subject’. Note that the compare method is case sensitive. Patterns are
allowed.

Table 3-3. Options in the Rule/User section

alias A name we use to identify the user
uniquely (well, its for our convenience only
so the server does not validate the value)

root-path The users root-path. This location, with its
subdirectories, is the only location on the
filesystem that this client is allowed to
access.

perms The operations we allow for this client
Possible values are: read, write, list, delete,
createdir

3.4.3. Sample configuration file

SSFT demo server configuration file
#
This is just an example of a configuration
file for ssft under Microsoft Windows.
#

==
==
General section
==

17

Chapter 3. Configuration

==

[General]

cert-dir = C:\devel\current\ssft\certs
log-file = C:\devel\current\ssft\svr_test\server.log

Uncomment and set port number if you want to
use an alternative port (230 is the default port)
port =

The server can write its process ID to a file.
This is common under UNIX systems, where signals
to this process IP is used to shut down the server.
pid-file =

SERVER options
server-cert =
server-key =

Uncomment if you want to bind to a spesific IP
number. The default is to use all IP numbers
assigned to the machine.
host =

CLIENT options
client-cert =
client-key =

==
==
User section
==
==

18

Chapter 3. Configuration

This is relevant for servers only
#
The information is received from the client sertificate,
which means that the combination of fields we use must
be unique. The simplest setup would be to use the
names only, and make sure to avoid duplicate names.
We can use any field from the certificate ’subject’.
Note that the compare method is case sensitive.
#
Patterns are allowed.

Spesific user
[User: O=Jgaas Inter-
net, CN=jgaa client 1, Email=jgaa@client1.jgaa.com]

A name we use to identify the user uniquely
(well, its for our convenience only so the
server does not validate the value)
alias = Jarle

The users root-path
root-path = C:\ssft_test\users\jgaa_client_1

The operations we allow for this client
Possible values are: read, write, list, delete, createdir
perms = read, write, list, delete, createdir

All other clients from Jgaa’s Internet
[User: O=Jgaas Internet, CN=jgaa client*]
alias = jgaa’s Internet
root-path = C:\ssft_test\users\Jgaas Internet
perms = list

Default rights for US users
[User: C=US]

19

Chapter 3. Configuration

alias = US citizens
root-path = C:\ssft_test\users\us\unknown
perms = list

Default rights if not specified above
[User: CN=*]
alias = nobody
root-path = C:\ssft_test\users\unknown
perms = list, read

Note: The lines may be wrapped in this manual. In the configuration-file, the
"token = value" sequence must be on one single line. This also applies for the
"[User: ...]" sequence.

20

Chapter 4. Testing SSFT

4.1. Server test
I assume that you have created the certificates and edited the configuration-file. Below
is the configuration file I used in this sample:

[General]

Default rights if not specified above
[User: CN=*]
alias = nobody
root-path = C:\Program Files\ssft\public
perms = read, write, list, delete, createdir

Now, open a MS-DOS/Command window, or terminal window if you are running X,
and start SSFT in server-mode.

C:\Program Files\ssft> ssft --cert-dir certs --server --verbose

ssft version 0.10, Copyright (C) 2001 Jarle (jgaa) Aase
ssft comes with ABSOLUTELY NO WARRANTY
This is free software, and you are welcome to redistribute it
under certain conditions;
ssft --license for details.
Listening for connections at 0.0.0.0:230
Ready, waiting for client connection...

If you get a output similar to this, things are looking good ;) The server is willingly
running and waitig for clients. Keep it running while we test the client-mode.

21

Chapter 4. Testing SSFT

4.2. Client test
Open a new MS-DOS/Command window or terminal window, and try a file-copy
command, using SSFT

C:\Program Files\ssft> ssft --verbose --cert-

dir certs ReadMe.txt localhost:/

ssft version 0.10, Copyright (C) 2001 Jarle (jgaa) Aase
ssft comes with ABSOLUTELY NO WARRANTY
This is free software, and you are welcome to redistribute it
under certain conditions;
ssft --license for details.
Looking up hostname localhost ... 127.0.0.1
Connecting to 127.0.0.1:230
SSL connection using DES-CBC3-SHA
Server certifi-
cate: /C=NO/ST=Hordaland/L=Bergen/O=Jgaas Internet...
Certificate is-
suer: /C=NO/ST=Hordaland/L=Bergen/O=Jgaas Internet...
connected to server
Sending file "ReadMe.txt" --> "localhost:/"
File transfered OK
Successfully done.

If you switch back to the server console, you should see something like this:

Client connected from 127.0.0.1:1038
Client sent Transfer from Client to Server command
Receiving file from client no-
body (127.0.0.1:1038): name="C:\Program Files\ssft\public\ReadMe.txt" size=262 bytes.
Received file client (127.0.0.1:1038): name="ReadMe.txt" size=262 bytes. OK
Client sent Quit command

When you have come this far, the program is working, and you can start to set up
and test your production environment.

22

Chapter 4. Testing SSFT

Note: It’s a good idea to test everything in interactive mode before you run SSFT
as a daemon, or the client as an automated job.

23

Chapter 5. Deployment

5.1. Windows NT Service
SSFT can run as a native Windows NT service. This means that the program starts
when the machine boots, and runs in the background, unaffected by user sessions on
the machine. The only way SSFT can communicate with the operator while running as
a service, is trough the logfile. This should therefore be assigned in the configuration
file at this time.

[General]

log-file = C:\Program Files\ssft\server.log

The following command will install SSFT as a service:

C:\Program Files\ssft> ssft --server --daemon --verbose --install

Successfully installed as a NT service as "ssft".
You must now enter the service applet in the con-
trol panel and configure the startup mode.

C:\Program Files\ssft> net start ssft

The ssft service is starting.
The ssft service was started successfully.

C:\Program Files\ssft> type server.log

==
==
2001-10-19 07:48 Now running as a native NT service.
2001-10-
19 07:48 ssft version 0.10, Copyright (C) 2001 Jarle (jgaa) Aase
ssft comes with ABSOLUTELY NO WARRANTY
This is free software, and you are welcome to redistribute it
under certain conditions;

24

Chapter 5. Deployment

ssft.exe --license for details.
2001-10-19 07:48 Ready, waiting for client connection...

C:\Program Files\ssft>

The three commands,ssft, net start and typeinstalls SSFT as a service, verifies that it
can start, and prints the log to the screen, so that you can spot any error-messages. If
everything seems ok, you can open the Services apples in the control panel, and
configure the service to start automatically.

If you ever need to uninstall SSFT as a NT service, just issue the commandssft
--uninstall .

5.2. Unix daemon
SSFT can run as a native Unix daemon. This means that the program starts when the
machine boots, and runs in the background, unaffected by user sessions on the
machine. The only way SSFT can communicate with the operator while running as a
service, is trough the logfile. This should therefore be assigned in the configuration file
at this time.

There is no uniform way to install a Unix daemon. The procedure varies from operating
system to operating system, and even from distribution to distribution. SSFT must
therefore be manually configured according to your system documentation.

In short, the commandssft --server --daemonwill start ssft in server-mode, and switch
to daemon mode. This command can be run from the initialization script for your Unix
brand (if the certificates and configuration file are ok).

25

Appendix A. Command Line Syntax
and Options

A.1. Overview
SSFT understand Posix-style command-line options. In environments with a complete
Gnu c library (line Linux), the Posix compatibility should be pretty good - but under
Windows and other systems that don’t support the getopt_long() library function, SSFT
use a simple substitute I wrote some time ago. This substitute understand the
--option and-- flags, but will not reorganize options. In English, this means that
options must be given before other arguments.

SSFT works much like scp (or cp/copy). You specify a file (or several files), and a
destination (file or folder). Either the source or destination must contain a hostname or
IP number that prefix the source or destination file. Some examples:

Example A-1. Copying files (Windows)

ssft "C:\Program Files\ssft\ReadMe.txt" 192.168.0.10:/testdir

ssft 192.168.0.10:/testdir/ReadMe.txt "C:\Program Files\ssft\"

ssft 192.168.0.10:/testdir C:\temp

Example A-2. Copying files (Unix)

ssft /usr/local/doc/ssft/ReadMe.txt 192.168.0.10:/testdir

ssft 192.168.0.10:/testdir/ReadMe.txt /home/jgaa

ssft 192.168.0.10:/testdir /tmp

26

Appendix A. Command Line Syntax and Options

Note: Note that the remote path always use normal slashes, while the local paths
use the semantics of your operating system.

A.2. Getting help
Usessft --help to get a brief list and explanation of all the supported command-line
options.

C:\>ssft --help
Copy files (client mode)

ssft [options] host:source target
ssft [options] source [source...] host:target

Server mode:
ssft [options] [hostname]

Utility mode (install, uninstall, certificate management):
ssft option [...]

Options:
-c --conf-file=name Specifies the configuration file to use
-p --port=# Set port number. Default is 230
-v --version Show version number and quit

--verbose Turn on verbose mode
--debug Turn on debug messages
--server Server mode (default is client mode)
--daemon Runs as a daemon

-l --log-file=name Name of logfile
-h --help Show this help

--cert-dir=path Certificate directory
--root-cert=name Root certificate file
--client-cert=name Client certificate
--client-key=name Client private key file
--server-cert=name Server certificate

27

Appendix A. Command Line Syntax and Options

--server-key=name Server private key file
--pid-file=name Write process ID to file

-s --service-name=name Sets the service name. Used with --
install

-i --install Install as a NT service (and quit)
-u --uninstall Uninstall as a NT service (and quit)
-L --license Show licensing terms (GPL)

Certificate management
--generate-ca Generates a root certificate
--new-server-cert Generates a server certificate
--new-client-cert Generates a client certificate

The actual options that are available may vary from version to version, and from
operating system to operating system.

A.3. The options

Table A-1. Command line options

--conf-file Specifies the configuration-file to use. This
option is persistent when used under
Windows with the --install --daemon
--server options. You can also specify what
configuration-file the service shall use, and
if use different ports and service-names,
you can have several service instances
running at the same Windows machine.
Under Unix, the startup scripts are sane, so
this special feature is not required.

28

Appendix A. Command Line Syntax and Options

--port Specifies a TCP/IP port to use. The server
will listen to this port. The client will
connect to it.

--version Prints the program name and version
number to the console and.

--verbose Prints more verbose information to the
console.

--debug Prints lots of information to the console.
Used to debug the internals of the program.

--server Starts up in server-mode. the default is
client-mode. In server-mode, SSFT waits
for incomming connections from clients.

--daemon Runs as a Unix daemon (hidden and
unaffected by the user). Under NT, this flag
is used with --install to flag that the
program shall be installed as a system
service.

--log-file Specifies a log-file. If not set, no log will
be written, (unless the log-file directive is
specified in the configuration file).

--help Prints a short help-text to the console.

--cert-dir Certificate directory

--root-cert Root certificate file

--client-cert Client certificate

--client-key Client private key file

--server-cert Server certificate

--server-key Server private key file

29

Appendix A. Command Line Syntax and Options

--service-name Used with --install to specify the name the
NT server will register as. The default is
"ssft". Other names can be used to test
experimental versions, or to run several
instances of the service.

--install Installs SSFT as a Windows NT service
and exits. This option is only available
under Windows NT and successors.

--uninstall Uninstalls the SSFT NT service. If you
specified another name than "ssft" with
--service-name, you must specify the same
option here.

--license Show licensing terms (Gnu Public
License)

--generate-ca Generates a new certificate authority
certificate and key pair. This is required if
you want to be your own certificate
authority. You will be prompted for a few
questions and a password. It is important
that you remember this password!

--new-server-cert Generates a new server certificate, and
signs it with the certificate authority
certificate.

--new-client-cert Generates a new client certificate, and
signs it with the certificate authority
certificate.

30

Appendix B. Firewalls
When it comes to legitim network traffic, firewalls are hell. Many new protocols today
encapsulate themselves into the http (www) protocol to bypass firewalls. This may
seem like a good idea, initially - as one avoid some problems with troublesome firewall
administrators. But it also undermines the security, since the same firewall
administrators loose the ability to decide what to let trough to the internal network.
SSFT makes no attempts to masquerade itself as something else. The protocol is
however designed to make as little problems as possible when it is allowed trough a
firewall. It makes use of a single TCP/IP address, and have no need for protocol-level
NAT if it is routed to a private network (like i.e. FTP).

In order to allow SSFT trough a firewall, open TCP port 230 from the client(s) to the
server(s). This is trivial on most firewalls, including ipchains and iptable based Linux
firewalls. If you have a firewall that require a protocol-layer driver, you can use any
driver that pass the TCP/IP stream untouched trough. A Telnet driver cannot be trusted
as it may react on telnet escape sequences.

31

Appendix C. The SSFT protocol

C.1. Overview
The SSFT protocol is a request/response driven protocol, like http and nntp. Unlike
these, the headers are sent as raw 8-bit binary data. Integers are in "network byte order"
(big endian).

More details to follow...

32

